Первая страница.



Этот сайт обслуживается на хостинге от компании RU-CENTER
    Благодарим Вас за то, что решили воспользоваться услугами нашей компании!
Вам предоставлена услуга виртуального хостинга. Настройку услуги вы можете произвести через Панель Управления, а также в разделе "Для клиентов"/"Услуги"/"Просмотр и изменение данных" на сайте www.nic.ru.


регистрация доменов, хостинг, почта
  Полупроводниковые кристаллы достигнут космического совершенства Версия в формате PDF Версия для печати
Рейтинг: / 0
ХудшаяЛучшая 

Первые эксперименты по получению материалов в космосе начались 50 лет назад. За прошедшие годы основные методики и подходы к данным исследованиям не претерпели больших изменений, но цели работ, лежащих в этом русле, стали совсем другими: от поиска новых термостойких металлов учёные перешли к полупроводниковым кристаллам для солнечной энергетики. К очередному эксперименту из этой серии готовятся исследователи из Института физики полупроводников им. А. В. Ржанова СО РАН совместно с коллегами из Университета Хьюстона (University of Houston): на борту Международной космической станции (МКС) они хотят вырастить кристаллы совершенной структуры для солнечных панелей.

Полупроводниковые кристаллы – это основа всей электроники, и, конечно, существует масса методов их получения в земных условиях. К сожалению, все они обладают общими недостатками: выращенные кристаллы часто оказываются неоднородными, слишком маленькими или испорченными посторонними примесями. Причин на то много, но среди них существует одна наиболее общего характера – сила притяжения. В земных условиях гравитация порождает явление термогравитационной конвекции, перемешивания жидкости под действием разности температур в поле тяготения. В условиях же космической невесомости роль этого фактора значительно спадает, и становится возможным получать полупроводниковые кристаллы более чистой структуры и совершенного состава.

Первые эксперименты по выращиванию материалов в космосе начались вскоре после полёта Гагарина, в 1961 году, и их результаты часто оказывались противоречивыми. Так, кристаллы Ge(Ca) и InSb(Te), полученные в американских экспериментах «Скайлэб», отличались высокой однородностью структуры, а кристаллы с борта «Аполлона-Союза», напротив, проигрывали своим земным аналогам. Причин для подобных неудач приводилось несколько: вибрации механизмов, остаточные микроускорения (ускорение свободного падения на борту космических аппаратов не равняется строго нулю вопреки распространяемым заблуждениям), некоторые конвекционные эффекты, незаметные при земном притяжении. Так учёным стало понятно, что космические условия намного сложнее, чем выглядят на первый взгляд, и многие эксперименты стали сопровождаться численными моделированиями. Они подтвердили: получать кристаллы совершенной структуры в космосе возможно, но чрезвычайно трудно.

Поэтому следующим этапом в изучении возможностей создания идеальных кристаллов стал метод физического моделирования. Полупроводниковые кристаллы часто получают методом направленной кристаллизации. Грубо говоря, тигель с нагретым расплавом нужного состава постепенно вносится в область с пониженной температурой, где и начинают расти кристаллы. Для ослабления земного явления термогравитации в подобных условиях учёные предложили перемещать не сам расплав, а создавать движущееся температурное поле с малыми радиальными температурными градиентами. Такой подход позволил моделировать космические условия роста кристаллов и заранее планировать эксперименты с экономией времени и материала. Один из самых ярких подобных опытов был проведён самими авторами обзорной статьи. Полупроводниковые кристаллы GaSb(Te) были перекристаллизованы в земных условиях и на борту АКА «Фотон-М3». В обоих случаях получились однородные кристаллы высокой чистоты, в которых наблюдались некоторые периодические зависимости физических свойств от структуры. При этом период зависимости для космических образцов составил 90 минут (что совпадает с периодом обращения спутника), а для наземных – 5–20 минут.

Очередной эксперимент по получению полупроводниковых кристаллов в космосе планируется провести уже в 2013 году. На борту МКС исследователи хотят вырастить кристаллы совершенной структуры для солнечных панелей – так уже отработанные методики находят новые практические приложения. При этом результаты подобных, несколько экзотических экспериментов помогают и совершенствованию наземных технологий.

Подробно результаты теоретических и экспериментальных работ, посвящённых выращиванию в космосе полупроводниковых кристаллов, описаны в обзорной статье российских физиков из ФТИ им. А. Ф. Иоффе РАН и НИЦ «Космическое материаловедение». Публикация размещена на страницах журнала «Физика твёрдого тела». Материалами для обзора послужили как многочисленные результаты исследований самих авторов, так и наиболее яркие работы их зарубежных коллег.

Источник информации:

И. Л. Шульпина, Б. Г. Захаров, Р. В. Парфеньев, И. И. Фарбштейн, Ю. А. Серебряков, И. А. Прохоров «Некоторые результаты выращивания кристаллов полупроводников в условиях микрогравитации (к 50-летию полёта Ю. А. Гагарина в космос)». Физика твёрдого тела, 2012, том 54, выпуск 7.

Петров Михаил для STRF.ru

 
< Пред.   След. >


Первая страница.



Этот сайт обслуживается на хостинге от компании RU-CENTER
    Благодарим Вас за то, что решили воспользоваться услугами нашей компании!
Вам предоставлена услуга виртуального хостинга. Настройку услуги вы можете произвести через Панель Управления, а также в разделе "Для клиентов"/"Услуги"/"Просмотр и изменение данных" на сайте www.nic.ru.


регистрация доменов, хостинг, почта
Rambler's Top100
bigmir)net TOP 100